Method for predicting response to DNA repair pathway inhibitors in diffuse large B-cell lymphoma

Jérôme Moreaux

Institute of Human Genetics, CNRS-UM 9002
Montpellier
Laboratory for Monitoring Innovative Therapies
Department of Biological Hematology
CHU Montpellier
Diffuse large B-cell lymphoma

- ~40% of Non-Hodgkin lymphomas
- ~ 23,000 new diagnoses/year
- ~ 50% cure rate
- ~ 10,000 deaths/year

Molecular heterogeneity

Subtype-specific response to chemotherapy
Patients with high risk are characterized by overexpression of DNA repair genes.

DNA repair in DLBCL

Rituximab

Cyclophosphamide

Alkylating Agent (ICLs)

H doxorubicin hydrochloride

Intercalating Agent (DSB)

Oncovin (vincristine)

Prednisone

Bret C et al. Oncotarget 2012

Bret C. Cell cycle 2013c
Microarray-based genome-wide screen for high-risk genes involved in DNA repair pathways

- DNA repair pathways → drug resistance
- Identification of high-risk patients that could benefit from inhibitors targeting DNA repair pathways
- FANC, NHEJ and MMR scores displayed independent prognostic information,
- They were combined to create a new DNA repair score

Inhibiting DNA repair appears to be a promising strategy to improve the efficacy of genotoxic drugs and overcome drug resistance in DLBCL

Bret C et al. BJH 2015
Therapeutic interest of DNA repair inhibitors in DLBCL
Identification of high-risk patients that could benefit from inhibitors targeting DNA repair pathways

Screening of DNA repair inhibitors using a panel of 17 DLBCL cell lines

FANC score
- R CHOP cohort
 - \(P = 7.8 \times 10^{-8} \)
 - Score \(\leq -5.24 \)
 - \(N = 192 (82.4\%) \)
 - Score \(> -5.24 \)
 - \(N = 41 (17.6\%) \)

Significant higher sensitivity to ATR inhibitors

HR score
- R CHOP cohort
 - \(P = 1.8 \times 10^{-8} \)
 - Score \(\leq -8.67 \)
 - \(N = 200 (85.8\%) \)
 - Score \(> -8.67 \)
 - \(N = 33 (14.2\%) \)

Significant higher sensitivity to Topo II inhibitors

BER score
- R CHOP cohort
 - \(P = 2.9 \times 10^{-9} \)
 - Score \(\leq -5.10 \)
 - \(N = 163 (70.0\%) \)
 - Score \(> -5.10 \)
 - \(N = 70 (30.0\%) \)

Significant higher sensitivity to Topo II inhibitors

Identification of high-risk patients that could benefit from inhibitors targeting DNA repair
Overcome drug resistance using DNA repair inhibitors

Synergistic effect of ATR inhibitor and cyclophosphamide

Improve the efficacy of genotoxic drugs and overcome drug resistance in DLBCL

Synergistic effect of chk1 inhibitor and cyclophosphamide
Conclusions

- DNA repair pathways are deregulated in DLBCL in association with a poor prognosis

- DNA repair scores allow the identification of high risk DLBCL patients that could benefit from treatment by DNA repair inhibitors

- Identification of synergistic combinations with DNA damaging agents used in conventional treatment to develop synthetic lethal approaches

- Overcome resistance to DNA damaging agents in DLBCL
Business opportunity and contact

- Co-development partner for Phase I study validation
- Approach that could be extended to other cancers

Acknowledgments

✧ Laboratory for Monitoring Innovative Therapies, CHU Montpellier: J Moreaux
✧ Institute of Human Genetics, CNRS-UM: P Pasero, A Constantinou
✧ Department of Clinical Hematology of Montpellier. Pr G Cartron