Anti-plexin B1 monoclonal antibodies as novel therapeutics

MRC Technology and Max Planck Institutes

Meera Swami, Business Development Manager
MRC Technology
Forming partnerships to drive early stage scientific research to the patient

ACADEMIC AND NON PROFIT Institutions

MRC heritage established 2000

Not for Profit

140+ staff

DRUG DISCOVERY

PHARMACEUTICAL BIOTECHNOLOGY Markets

MRC

DRUG DISCOVERY

Unmet Medical Need

Therapeutic ANTIBODIES

Small molecules

12 DRUGS in clinical development

4 DRUGS marketed

12 DRUGS in clinical development

Not for Profit

MRC heritage established 2000

ACADEMIC AND NON PROFIT Institutions
MRC Technology current pipeline

Assay Development
- GPR88
 - CNS
 - Internal
- Confidental target
 - Cancer
 - University of Leicester
- CD36
 - Metastatic cancer
 - IRB Barcelona
- CSF-1R
 - Dementia
 - University of Southampton
- Fractalkine
 - Dementia
 - University of South Florida
- Phenotypic screen
 - Dementia
 - ICGEB

Hit Generation
- ULK1
 - Cancer Autophagy
 - MRC
- ALK ADC
 - MRC
 - Cancer
 - Internal
- MALT1
 - Cancer
 - University of Lausanne
- Confidential target
 - Cancer
 - MRC

Hit to Lead
- AB oligomer Ab
 - Alzheimer's
 - University Göttingen
- Confidential target
 - Migraine / pain
 - University Oxford
- Matriptase
 - Osteoarthritis
 - Newcastle University
- MIF inhibitor
 - Inflammation
 - Proximagen
- Confidential target
 - TB
 - University of Manchester
- GalR2 activator
 - Pain
 - University of Bristol
- Netrin-1
 - Bone disease
 - New York University

Lead
- IL17BR
 - Fibrosis
 - MRC
- MNK inhibitor
 - Cancer
 - Southampton University
- EV71 antibody
 - hand, foot and mouth
 - Chinese Acad Science
- PAICS inhibitor
 - Cancer
 - Netherlands Cancer Institute
- IL16 antibody
 - Inflammation
 - Boston University
Plexin B1 as a therapeutic target

- Plexin B1 is a member of a large family of transmembrane receptors that bind to semaphorin ligands
- Receptor-ligand interactions result in alterations in movement and differentiation of cells
- Plexin B1 is a receptor for the ligand Semaphorin 4D
- The Plexin B1-Sema 4D interaction has been implicated in a number of diseases, including multiple sclerosis, osteoporosis, arthritis, cancer, inflammation, neurodegenerative diseases
- We are interested in developing novel monoclonal antibodies that block this interaction with the aim of delivering a new class of therapeutics with particular utility in immune-mediated diseases
Target validation in osteoporosis

- Binding of Sema4D to Plexin B1 on osteoblasts leads to activation of RhoA, which inhibits bone formation.
- Blocking the Plexin B1-Sema4D interaction via Plexin B1 or Sema4D ko or a Sema4D-specific antibody prevents bone loss in an ovariectomized osteoporosis model.
- **Prophylactic and therapeutic benefits shown**
- An anti-Plexin B1 antibody that blocks this same interaction would be expected to have a similar effect.
- **Key advantage**: current osteoporosis therapeutics focused on slowing bone resorption. This therapy would **stimulate bone formation**.

Data from Negishi-Koga et al (2011)
Target validation in cancer

- Mutations in Plexin B1 are found in breast and prostate cancer
- Plexin B1 promotes metastasis in mice with ERBB2-overexpressing breast cancer and invasion in ERBB2-overexpressing breast cancer cells
- Patients with ERBB2-overexpressing breast cancer that have high Plexin B1 expression show poor prognosis
- **Key advantages:** ERBB2 (HER2) resistance to targeted therapies is a significant clinical problem. A Plexin B1 antibody could offer an alternative therapeutic for *trastuzumab-resistant tumours*. Possibility of patient stratification on Plexin B1 expression
Tumour immunomodulatory effects

- Vaccinex anti-Sema4D antibody has shown effects in the tumour microenvironment (TME)
- Suggest that Sema4D expression affects infiltration and distribution of leukocytes in the TME
- Vaccinex antibody shows synergy with anti-CTLA4 and anti-PD1 therapeutics
- Goal to test whether anti-Plexin B1 also has effects on the TME and synergises with other IO therapies
- IO therapies are a commercially attractive area – multi billion $ market

Data from Evans et al. (2015)
An international drug discovery collaboration

Collaborative project goals

- Novel humanised monoclonal antibodies to block Plexin B1-Sema4D binding
- Novel IP position
- Data package to support therapeutic effects in relevant disease models
- Biophysical package to characterise drug-like properties of therapeutic antibodies

MRC Technology

- Independent medical research charity
- Own drug discovery laboratories
- Over 25 years experience in antibody therapeutics and humanisation
- Wealth of commercialisation expertise
- 4 antibody therapeutics on the market
- Self-funded from revenues

Max Planck Institute for Heart and Lung Research

- Prestigious research institute
- High profile translational researcher Professor Stefan Offermanns
- In depth expertise in PlexinB1 biology
- Expertise in variety of disease models (osteoporosis, MS, cancer)
Advantages of the technology

- **Good disease association and target validation** for Plexin B1-Sema4D that has been reported by independent groups, including industry.
- Potential to use the antibodies in **multiple indications with unmet therapeutic needs**.
- **Side effects expected to be low** – Plexin B1 shows restricted expression pattern and Plexin B1 ko mice have no obvious abnormalities (other than bone phenotype). Vaccinex antibodies have been well tolerated in PhI clinical trials.
- **No direct competition** on Plexin B1 target.
- Differentiation from anti-Sema4D may be possible – different expression patterns and Sema4D also binds Plexin B2.
- Potential to gain **novel IP position** on new Plexin B1 antibodies being generated by MRCT.
Plexin B1 is an emerging, exciting therapeutic target in cancer and immune-mediated diseases

- Targeting the Plexin B1-Sema4D interaction may have potential in a number of different disease indications, making it commercially attractive
- Generated novel, monoclonal antibodies against this interaction, with the goal of filing IP by the end of 2017
- Demonstrated target validation *in vitro* and *in vivo* disease models using novel antibodies generated by MRCT
- Recent exciting data from Vaccinex suggest an IO effect of blocking Plexin B1-Sema4D
- Strong multi-disciplinary collaborative team combines therapeutic antibody expertise from MRCT and Plexin B1 biology expertise from Max Planck collaborators

- We are interested in finding commercial partners for further collaborations or licencing to explore the potential of our novel antibodies further