Innovative inhibitors of Notch trafficking and signalling for the treatment of cancer
The Notch Signaling Pathway

- **Regulates:**
 - patterns of gene expression
 - cell differentiation
 - binary cell fate choice
 - maintenance of stem cell populations

- **Function:**
 - Embryonic Development
 - Adult Self-Renewing Organs

Kopan R & Ilagan M, Cell 2009 | Vol 137 Issue 2 pp.216-233
Abnormal Notch Signaling and Cancer

Oncogenic activity of Notch
- Notch active → Progenitor → Differentiated Cell
- Notch inactive

Tumor suppressor activity of Notch
- Notch inactive → Progenitor → Differentiated Cell
- Notch active

Notch Misregulation
- Blocks Differentiation
- Promotes Survival
- Increases Proliferation
Estimated new Cancer cases in the US 2014

<table>
<thead>
<tr>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>27%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>14%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>8%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of skin</td>
<td>5%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>5%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>4%</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>4%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>3%</td>
</tr>
<tr>
<td>All other sites</td>
<td>20%</td>
</tr>
<tr>
<td>855,220</td>
<td>810,320</td>
</tr>
</tbody>
</table>

Breast	29%
Lung & bronchus	13%
Colon & rectum	8%
Uterine corpus	6%
Thyroid	6%
Non-Hodgkin lymphoma	4%
Melanoma of skin	4%
Kidney & renal pelvis	3%
Pancreas	3%
Leukemia	3%
All other sites	21%

Hyperactive Notch Signaling

Notch is a rational target in Cancer Therapy

Many steps of intervention are discussed for Notch signaling:

- γ-Secretase Inhibitors (GSIs)*
- ADAM-Inhibitors (ASIs)
- Endocytosis inhibitors
- Transcriptional Complex Inhibitors
- Antibodies
- Synthetic peptides
- Trafficking inhibitors

*Currently in Clinical Trials
 e.g. BMS-906024, RO04929097, MK-0752, and PF3084014

Kopan R & Ilagan M, Cell 2009 | Vol 137 Issue 2 pp.216-233
Screening for new Notch Inhibitors

Notch∆E-EGFP

PM → γ-sec. Notch∆E-EGFP → NICD-EGFP → nucleus

DMSO

Fli-06

Krämer et al, Nat Chem Biol 2013
FLI-06 suppresses Notch signaling

Inhibition of Notch in vitro in C2C12 cells
Luciferase activity

Inhibition of Notch in vitro in A549 lung cancer cells
Notch target gene

Inhibition of Notch in vivo in Zebrafish
Notch target gene

![Graphs and images showing inhibition of Notch signaling](image.png)
Inhibition of Notch-dependent tumor cells

FLI-06 on DND-41

viable cell count

- **DMSO**
- **10µM FLI-06**
- **1µM FLI-06**

Day 0 Day 1 Day 2 Day 3 Day 4
FLI-06 and inhibition of SASP

Senescence Associated Secretory Phenotype

- Cytokines
- Chemokines
- Proteases
- Growth Factors

DNA Damage

- Ribosomal Stress
- Spindle Stress
- Chromatin Distortion
- Telomere Dysfunction
- Oxidative Stress

Senescent cell
FLI-06 and inhibition of SASP

SASP and cancer

in vitro SASP model

Naylor RM et al, Clinical Pharmacology & Therapeutics 2013 | Vol 93 | Issue 1 | pp. 105-116
Development Challenge

Compound Profiling

- Toxicity Data (in vitro and in vivo)
- SAR and Derivatization
- Target Identification
 - Pharmacokinetics, Pharmacodynamics

Clinical relevance

- Cancer, SASP
- Cancer Therapy?
- Disease Model (Zebrafish, Mouse, Nothobranchius)
- Favorable outcome?

Activity profiling

- ER Ultrastructure
- Further study of cellular effects
R&D Status

Strength
- The compound targets the Notch pathway and presumably reduces side-effects
- Secretion Inhibition may reduce Relapse

Weakness
- Early Phase Development
- Mode of action not yet clear

Opportunities
- A novel unanticipated mode of action is beneficial for cancer treatment
- Compound class already marketed as drugs

Threats
- As all Notch Inhibitors it lacks specificity
- No satisfactory outcome after closer investigation

Funding

Scientific Input

Manpower

Co-Development

Infrastructure

In-Licensing
Acknowledgements

Christoph Kaether
Torben Mentrup
Christian Engelmann
Daniela Reichenbach
Christina Valkova
Daniela Glahn
Katja Müller
Maria Wesolowski
Sina Metz
Tao Li

Eric Rivera Milla
Christoph Englert
Birgit Perner
Simone Tänzer
Anne Gompf
Katrin Buder
Carsten Dornblut
Aspasia Ploubidou

Bertrand Kleizen

Jens Peter von Kries
Silke Radetzki
Martin Neuenschwander

Richard Nohl
Christoph Enzensperger
Eric Täuscher
Oliver Werz
Hans-Dieter Arndt

PAKT FÜR FORSCHUNG UND INNOVATION
LeibnizAgeNet: signalling pathways in age-related diseases

Thank you for your attention!
Contact:

Inquiries Technology Transfer: Dr. Sabina Heim, Ascenion
heim@ascenion.de
www.ascenion.de

Scientific Inquiries: Dr. Christoph Kaether
ckaether@fli-leibniz.de

Dr. Andreas Krämer
akraemer@fli-leibniz.de
www.fli-leibniz.de

Further Reading:
