Corallopyronin A as an effective anthelmintic

Dr. rer. nat Kenneth Pfarr
Filariasis in humans and dirofilariasis in pets

• caused by nematodes, transmitted via blood sucking insects

• human filariasis
 a) lymphatic filariasis (elephantiasis):
 • 120 million infected
 • ~40% have disease
 b) onchocerciasis (river blindness):
 • 40 million infected
 • ~50% have disease

• dirofilariasis (heartworm disease):
 • infect more than 30 species of animals
 • large companion animal market
 • endemic in all States of the USA, especially in the South
Corallopyronin A targets the bacteria *Wolbachia*

- all worms harbor the bacterial endosymbiont *Wolbachia*
 - essential for worm development, fecundity and survival

- Corallopyronin A (Cor A) has efficacy against *Wolbachia*
 - *in vivo* results: depletion of >98% of *Wolbachia* → blocked larval development
Existing solutions – promising alternative CorA

Current treatment in humans:

a) target: the nematode
 - e.g. diethylcarbamazine, ivermectin
 - populations in endemic regions
 - treatment for many years
 - suboptimal responders are observed
 - possible resistance

b) target: Wolbachia
 - doxycycline, rifampicin
 - contraindication for children
 - rifampicin is given against tuberculosis
 - not used for filariasis to avoid risk of developing resistance in *M. tuberculosis*

beneficial alternative: Corallopyronin A
Corallopyronin A – a novel RNAP inhibitor

- MoA: binds “switch region”
 - active against rifampicin-resistant *S. aureus*
 - no cross-resistance, e.g. rifampicin

- good efficacy against Gram+
 - *E. coli tolC* mutants are sensitive
 - ineffective against *Mycobacterium* spp.

- is orally available in mice
 - equivalent to intraperitoneal injection

- is not cytotoxic
 - effective dose is 1 µg/mL
 - cytotoxicity seen at 20-200 µg/mL
 - no up-regulation of CYP450 expression
 - first evidence, that CorA will not induce negative drug-drug interactions
Corallopyronin A – a potential therapeutic agent

• PCT patent application is pending
 • positive search report

• next steps:
 • minimum dosage finding in susceptible rodents
 • primary pharmacodynamics and pharmacokinetics
 • in vitro CYP profiling
 • ADMET in rodents and dogs
 • development of a Galenic formula
 • further development of the production of CorA
 • optimization of purification, specification, stability tests)

• access to rights for commercial use of this invention and the opportunity for further co-development
Thank you for your attention!

Prof. Dr. med. Achim Hoerauf
Dr. rer. nat. Kenneth Pfarr
University Hospital Bonn
Institute for Medical Microbiology, Immunology and Parasitology
Tel: +49 228 287-15675
Email: hoerauf@microbiology-bonn.de, pfarr@microbiology-bonn.de